Виберіть наступне рішення:
Розпізнання тексту ГДЗ що на зображені:
117. 1) і'(х) = х", и є Х, и — парне, х є В. Я вЂ” х) = ( — х)" = х" = ~(х), ~(х) є парною функцією на симетричній множині ( —;+ ) відносно точки О. 2) Ях) = -Зх' + )х! — 1, х є В. ~( — х) = — 3( — х)б + ! — х)~ — 1 = — Зх' + )х( — 1 = ~(х). Відомо, що (а) = ( — а). Отже, і(х) е парною функцією па симетричній множині ( —; +. ) нідносно точки О. 3) бб*)=Д-б 5б+ І'+б iб, бЯб — З*~б — б!* +б ~ббб Р хє В).
.,ббб л ° Кб йТВ=Я" б 3 ° б-Ґ;л= Отже, і".(х) — парна функція на симетричній множині ( —; + ) відносно точки О. 4) бб 1= 46-* ' бб-*)=бб-(-и)' = /б — *б = бб*). Отже, ~(х) — парна функція на симетричній множині (-; — /5) и (i/5; + ° ). )5х — 2/+ !5х+ 2/
х — 1 й — х) —— )5 (-х) — 2)+ )5. ( — х)+ 2! / — 5х — 2/+ ! — 5х+ 2! ~5х+ 2~+ ~5х — 2~
— — — Дх).
(-х)' — 1 х' — 1 х' — 1
Отже, Дх) — парна функція на симетричній множині ( —; — 1) и (1; + ).
117. 1) і'(х) = х", и є Х, и — парне, х є В. Я вЂ” х) = ( — х)" = х" = ~(х), ~(х) є парною функцією на симетричній множині ( —;+ ) відносно точки О. 2) Ях) = -Зх' + )х! — 1, х є В. ~( — х) = — 3( — х)б + ! — х)~ — 1 = — Зх' + )х( — 1 = ~(х). Відомо, що (а) = ( — а). Отже, і(х) е парною функцією па симетричній множині ( —; +. ) нідносно точки О. 3) бб*)=Д-б 5б+ І'+б iб, бЯб — З*~б — б!* +б ~ббб Р хє В).
.,ббб л ° Кб йТВ=Я" б 3 ° б-Ґ;л= Отже, і".(х) — парна функція на симетричній множині ( —; + ) відносно точки О. 4) бб 1= 46-* ' бб-*)=бб-(-и)' = /б — *б = бб*). Отже, ~(х) — парна функція на симетричній множині (-; — /5) и (i/5; + ° ). )5х — 2/+ !5х+ 2/
х — 1 й — х) —— )5 (-х) — 2)+ )5. ( — х)+ 2! / — 5х — 2/+ ! — 5х+ 2! ~5х+ 2~+ ~5х — 2~
— — — Дх).
(-х)' — 1 х' — 1 х' — 1
Отже, Дх) — парна функція на симетричній множині ( —; — 1) и (1; + ).
- Пошук книги по фільтру